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BACKGROUND Consumer devices with broad reach may be useful in
screening for atrial fibrillation (AF) in appropriate populations.
However, currently no consumer devices are capable of continuous
monitoring for AF.

OBJECTIVE The purpose of this study was to estimate the sensi-
tivity and specificity of a smartwatch algorithm for continuous
detection of AF from sinus rhythm in a free-living setting.

METHODS We studied a commercially available smartwatch with
photoplethysmography (W-PPG) and electrocardiogram (W-ECG) ca-
pabilities. We validated a novel W-PPG algorithm combined with a
W-ECG algorithm in a free-living setting, and compared the results
to those of a 28-day continuous ECG patch (P-ECG).

RESULTS A total of 204 participants completed the free-living
study, recording 81,944 hours with both P-ECG and smartwatch
measurements. We found sensitivity of 87.8% (95% confidence in-
terval [CI] 83.6%–91.0%) and specificity of 97.4% (95% CI 97.1%–

97.7%) for the W-PPG algorithm (every 5-minute classification);
sensitivity of 98.9% (95% CI 98.1%–99.4%) and specificity of
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99.3% (95% CI 99.1%–99.5%) for the W-ECG algorithm; and sensi-
tivity of 96.9% (95% CI 93.7%–98.5%) and specificity of 99.3%
(95% CI 98.4%–99.7%) for W-PPG triggered W-ECG with a single
W-ECG required for confirmation of AF. We found a very strong
correlation of W-PPG in quantifying AF burden compared to P-ECG
(r 5 0.98).

CONCLUSION Our findings demonstrate that a novel algorithm us-
ing a commercially available smartwatch can continuously detect AF
with excellent performance and that confirmation with W-ECG
further enhances specificity. In addition, our W-PPG algorithm
can estimate AF burden. Further research is needed to determine
whether this algorithm is useful in screening for AF in select at-
risk patients.
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Introduction
Atrialfibrillation (AF) is themost common cardiac arrhythmia,
affecting more than 33 million adults worldwide.1 Approxi-
mately one-third of individuals who have AF are asymptom-
atic.2 The most serious complication of AF is cardioembolic
stroke, with one-third of all strokes attributed toAF.Moreover,
the amount of AF (defined as AF burden) and not just the
presence of AF is related to risk of stroke and development
of heart failure.3,4 Therefore, an approach to large-scale
screening of AF in asymptomatic participants at risk for stroke,
aswell asmonitoring ofAFburden, could have amajor impact.
Furthermore, having an approach that is tunable to the risk and
prevalence of AF is crucial to minimize user burden and
unnecessary utilization of health care resources.

Baseline screening of AF in high-risk individuals can lead
to fewer patient-years with undetected AF, fewer strokes, and
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overall increase in life-years in participants at high risk for
stroke.5,6 Mobile health technology, specifically noninvasive
wearables with photoplethysmography (PPG), has been a
promising avenue for the detection of AF and may be an
effective and practical approach for large-scale screening
given their growing wide-spread use.7–12

Although consumer-grade on-demand electrocardiogram
(ECG) devices have been developed and used to detect
symptomatic AF, they have minimal utility for detecting
asymptomatic AF. We first reported a machine learning algo-
rithm to detect AF from heart rate measurements derived
from a commercial smartwatch,10 and a similar approach
has been used to trigger an on-demand ECG.13 The Apple
Heart Study demonstrated the utility of a simple noncontin-
uous tachogram measure of PPG irregularity that monitors
for 1 minute every 2 hours (and only when the user is still).14

Importantly, none of these approaches are robust enough to
allow for true near-continuous monitoring to quantify the
amount of AF (ie, AF burden).

The objective of our study was to develop and validate a
robust algorithm to detect AF episodes from sinus rhythm
(SR) and quantify AF burden in a real-world setting. This
was done using the Samsung Galaxy Watch Active 2 (Sam-
sung, Seoul, South Korea), a consumer-grade device
equipped with a continuous watch photoplethysmography
(W-PPG) sensor and an on-demand watch ECG (W-ECG)
sensor. We report the performance of this algorithm in a
remote, real-world setting and compare it to the gold-
standard continuous 28-day ECG patch monitor.
Methods
The research study was conducted with approval of the
University of California San Francisco (UCSF) Institutional
Review Board. Informed consent was obtained from all
participants.

W-PPG and W-ECG algorithm development
Details of the W-PPG and W-ECG algorithm development
are described in the Supplemental Appendix and
Supplemental Table 1.

Free-living validation study
After the W-PPG and W-ECG algorithms had been
developed and optimized, we set out to validate them in a
real-world setting. We enrolled participants with a known
prior diagnosis of AF or those at risk for developing AF in
a remote-based study (My Heart Lab Validation Study;
ClinicalTrials.gov Identifier: NCT04314947) in which
participants simultaneously wore a continuous ECG patch
(Biotel ePatch, BioTelemetry, Inc., Malvern, PA) and a
Samsung watch for 4 consecutive weeks.

Study population
To achieve the targeted enrollment of 200 participants contrib-
uting data for analysis, participantswere screened and enrolled
from April 2020 to June 2020 from the Health eHeart Study, a
large online observational cohort of.300,000. The studywas
conducted completely remotely using the Eureka Research
Platform (https://info.eurekaplatform.org/), a research
platform developed in part through National Institutes of
Health funding for conducting mobile research, supporting
over 40 mobile studies with .400,000 participants. Partici-
pants were screened for a self-reported diagnosis of AF or
with any one of the following risk factors: age 65 years and
older, or history of hypertension, diabetes, heart failure, or
coronary disease. Eligible participants were invited to partici-
pate in the MyHeartLab Validation study via an e-mail
containing a link to the study in the Eureka Research mobile
application (app).
Enrollment and data collection
All study-related activities were performed on the partici-
pants’ own smartphone using the Eureka Research app. After
patients confirmed their eligibility and provided their consent
and shipping address within the app, a study kit consisting of
two 14-day BioTel ePatches (P-ECG) and a smartwatch were
shipped to the participant. Participants completed surveys to
report their demographics, relevant medical history, AF
symptom burden, and medications.15 To increase adherence
to the study activities, regular reminders using push notifica-
tions and SMS text reminders were sent via the Eureka
Platform. Two weeks after completion of the first patch, the
participant received a notification and instructions to change
the ePatch. At the end of the study, participants received auto-
mated reminders to remove and mail back the ePatches, and
the watch was remotely wiped of the investigational software.

The Samsung Galaxy Active 2 smartwatch used in this
study is a consumer-grade device with the hardware to obtain
continuous W-PPG recordings for AF detection and an on-
demand, single-lead W-ECG. The watch required a specific
investigational software app that was preloaded and used
only in this study to activate the hardware and run the algo-
rithms. Using the algorithm described in the Supplemental
Appendix, the W-PPG continuously monitored heart rhythm
and rate, and classified a nonoverlapping, moving 5-minute
window into “regular,” “irregular,” or “uncertain.” If the
W-PPG detected an irregular rhythm over a 5-minute
window, a notification was sent to the participant to take an
on-demand W-ECG (Figure 1). If the W-ECG was not
done, repeat notifications were sent after 15 minutes, 1
hour, 2 hours, and 4 hours. If the first W-ECG showed AF,
the participant was reminded in 1 hour to take another W-
ECG. If the W-ECG results in an “inconclusive” classifica-
tion, participants were reminded to repeat the W-ECG in 5
minutes. Participants were also randomly notified to record
1 W-ECG per day and were able to record a W-ECG on
demand.
Data management and processing
Upon return of the ePatches, the data were uploaded for pro-
cessing, analysis, and adjudication. All P-ECG signals were
converted to ISHNE format for input into the UCSF’s Signal
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Processing Core using CER-S (Continuous ECG Recording
Suite; AMPS-LLC, NY, NY) for further processing and
analysis. AF episodes were identified and overread by a tech-
nician and a board-certified cardiologist. All periods of SR
(defined as heart rate,100 bpm with P waves prior to every
QRS;,4 premature atrial contractions or premature ventric-
ular contractions in a row; and no bigeminy or trigeminy)
were identified. Episodes of AF were reviewed to ensure
that they did not overlap with SR episodes. Participants
with �1% ventricular pacing were excluded from the
analysis since the algorithm was not designed to detect AF
during regular ventricular pacing.

All signals and data from the Samsung smartwatch was
collected via WiFi or cellular service and stored in the
Eureka Platform through an Application Program Interface.
The W-ECG and W-PPG signals were time-aligned with the
P-ECG. Because we were interested in evaluating the perfor-
mance of the algorithm in distinguishing AF from SR,
we analyzed all SR and AF P-ECGs that had simultaneous
W-PPG or W-ECG recordings. Furthermore, 3000 randomly
sampledW-ECGs (ensuring at least 1/3 sampled are classified
as SR) from the pool of recorded W-ECGs were adjudicated
by 2 board-certified cardiologists (with a third electrophysiol-
ogist breaking any ties). Finally, we calculated AF burden
(percent time in AF) using the W-PPG algorithm and
compared it to that determined by P-ECG.

Statistical analysis
Descriptive statistics are reported as count (percentage) for
categorical variables and median (interquartile range [IQR])
or mean 6 SD for continuous variables, as labeled. Sensi-
tivity, specificity, and area under the curve for the detection
of AF episodes were calculated using the AF or SR result
on the P-ECG as the gold standard. To account for repeated
measures and estimate confidence intervals (CIs) of sensi-
tivity and specificity, we used intercept-only generalized
linear mixed logistic models for test positivity or negativity,
restricted to true-positive or true-negative intervals, respec-
tively. To assess the accuracy of AF burden measurement
based on W-PPG in reference to P-ECG, a Pearson
correlation with mean squared error was performed.

Results
E-mail invitations were sent to 10,042 Health eHeart Study
participants, of whom 40% (4003) opened the e-mail and
Figure 1 Screenshots and flow of notifications on the smartwatch in the investig
electrocardiogram; HR 5 heart rate; W-ECG 5 watch electrocardiography; W-PP
7.7% (783) clicked on the link to learn about the study. A
total of 332 participants completed the eligibility survey, of
whom 16 were not eligible for the study (Figure 2). Of the
295 consented participants, the first 221 participants received
the study kit, and the other 74 participants were put on a wait-
ing list. Fourteen participants did not contribute data: 12 due
to a technical problem in the first batch of watches that pre-
vented data transmission and 2 due to unreturned patches.
Therefore, a total 207 participants contributed data from
both the ePatch and smartwatch (Figure 2). After manual
review, 2 participants with significant (.90%) ventricular
pacing and 1 who had poor P-ECG signal quality were
excluded from analysis. Thus, we report data from 204
participants who had 384 ePatches analyzed and a total of
5462 participant-days of data.

Characteristics of the participants are listed in Table 1.
Participants wore the smartwatch a median of 20.9 hours/
day (IQR 18.8–21.9). The W-PPG monitored participants
for an average of 19.5 6 4.2 hours/day for a total of
106,663 hours. A total of 32.2% of the W-PPG data was
classified as indeterminate, 7.4% as AF, and 60.2% as SR.
Participants on average took 5.4 6 3.7 W-ECGs per day,
totaling 24,209 W-ECGs recorded during the study period
(Supplemental Figure 1). The median rate of recording a
W-ECG in response to a W-PPG alert was 66.7% (IQR
34.4%–100%). The indeterminant rate for W-ECG rhythms
recorded during periods of SR on the P-ECG was 52.3%
(1.0% due to rate cutoffs, 2.2% due to ectopic beats, and
49.1% due to poor signal quality) and for those that were
recorded during AF on P-ECG was 43.7% (0.1% due to
rate cutoffs, 0.7% due to ectopic beats, and 42.9% due to
poor signal quality).

A total of 81,944 hours of monitoring from the ePatch
with simultaneous W-PPG data was recorded and analyzed.
There were 266 AF episodes �5 minutes in 54 participants
and 200 episodes �60 minute in 53 participants recorded
on the P-ECG while simultaneously wearing the smartwatch.
The time of day ofW-PPG classifications andW-ECGs taken
are shown in Figure 3. There were 145 AF episodes detected
on a single W-ECG and 95 episodes confirmed on a second
W-ECG taken at least 1 hour after the first W-ECG, with 6
episodes without a W-ECG recorded at all.

The performances of the W-PPG and W-ECG algorithms
are listed in Table 2. Sensitivity and specificity of the contin-
uous 5-minute (nonoverlapping moving window) W-PPG
ational software. AF 5 atrial fibrillation; AFib 5 atrial fibrillation; ECG 5
G 5 watch photoplethysmography.



Figure 2 Consort diagram showing flow of screening, enrollment, and data analyses in the study. ECG 5 electrocardiogram.
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decisions alone were 87.8% (95% CI 83.6%–91.0%) and
97.4% (95% CI 97.1%–97.7%), respectively. We also deter-
mined the performance of an a priori scheme for notifying
users to check a W-ECG based on 2-of-3, 5-minute W-PPG
classifications meeting AF criteria. This a priori
notification-level performance demonstrated sensitivity of
81.8% (95% CI 71.2%–89.1%) and specificity of 99.4%
(95% CI 99.3%–99.5%). The performances of the algorithm
when other rhythms were included (in addition to AF and SR)
found on P-ECG are listed in Supplemental Table 2 and are
nearly identical to those when only AF and SR on P-ECG
were analyzed. Figure 4 shows the performance at the notifi-
cation level across the spectrum of n–1/n 5-minute decisions
to trigger a user notification.

Sensitivity and specificity of the W-ECG algorithm alone
compared to the P-ECGwere 98.9% (95% CI 98.1%–99.4%)
and 99.3% (95% CI 99.1%–99.5%), respectively. Using the
random sample of W-ECGs adjudicated by 2 cardiologists,
sensitivity of the W-ECG was 98.8% and specificity 97.0%
compared to expert rhythm interpretation. When assessing
the performance of W-PPG triggered W-ECG with a single
W-ECG required for confirmation, sensitivity and specificity
were 96.9% (95% CI 93.7%–98.5%) and 99.3% (95% CI
98.4%–99.7%), respectively. When a second W-PPG
triggered W-ECG done at least 1 hour apart from the first
W-ECG was required, sensitivity decreased slightly to
96.5% (95% CI 94.1%–97.9 %) but specificity increased to
100% (95% CI: 100%–100%).
W-PPG performance in quantifying AF burden compared
to P-ECG was excellent (Figure 5), with correlation of
r 5 0.98 and mean average error of 4.3%6 4.6%. The error
in estimating AF burden was highest for longer AF burden.
Discussion
We observed a high accuracy of a novel continuous W-PPG
algorithm for monitoring of irregular heart rhythms combined
with W-ECG detection of AF in a free-living setting using a
smartwatch compared to a 28-day ePatch (P-ECG). In addi-
tion, the watch’s performance in measuring AF burden by
continuous W-PPG was excellent. To our knowledge, this is
the first study to compare the accuracy of a W-PPG triggered
W-ECG in a free-living setting to detect AF, which can reduce
the number of false-positive diagnoses, and the first tomeasure
AF burden using a smartwatch.

We demonstrated that our smartwatch-derived PPG has
excellent performance characteristics, with high sensitivity
(87.8%) and specificity (97.4%). Previous studies demon-
strated that PPG algorithms had sensitivity between 90%
and 96% and specificity between 85% and 99% for diag-
nosis of AF.7,8,16–21 Despite this excellent performance,
these studies followed participants for a limited amount of
time and usually only looked at short recordings of PPG
of ,1 hour and in a controlled setting. In MyHeartLab,
we collected .106,663 hours of simultaneous watch and
P-ECG data and report on the performance of every



Table 1 Characteristics of the study population (N 5 204)

Age (yr) 62.61 6 11.60
,65 yr 101 (52)
65–75 yr 72 (37)
.75 yr 23 (11)

Sex
Male 112 (54)
Female 95 (46)

Race
Caucasian 185 (89)
Hispanic 10 (5)
African-American 8 (4)
Asian 8 (4)

History of AF
No history 32 (15)
Paroxysmal 159 (77)
Persistent 16 (8)

Symptoms of AF
In AF at time of study 29 (15)
Daily 10 (5)
Weekly 50 (26)
Monthly 40 (20)
Within 1 yr 40 (20)
.1 yr 14 (7)
Never aware 13 (7)

Comorbidities
History of HTN 106 (51)
History of CHF 33 (16)
Previous MI 20 (10)
History of coronary disease 42 (20)
Prior CVA or TIA 20 (10)
Diabetes 30 (14)
Obstructive sleep apnea 85 (41)

CHA2DS2VaSc score
0–1 64 (32)
2–4 115 (58)
5–7 17 (8)

Values are given as mean 6 SD or n (%).
AF 5 atrial fibrillation; CHF 5 congestive heart failure; CVA 5 cerebro-

vascular accident; HTN 5 hypertension; MI 5 myocardial infarction;
TIA 5 transient ischemic attack.
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classification of the algorithm. Tison et al10 looked at time
series of heart rate values (not using the raw PPG signal)
collected using the Apple Watch for the detection of AF
to develop and validate a deep neural network algorithm.
The algorithm demonstrated excellent performance against
12-lead ECG (sensitivity 98.0%; specificity 90.2%) for the
detection of AF when tested in a controlled environment.
However, when deployed in a free-living setting, perfor-
mance decreased (sensitivity 67.7%; specificity 67.6%).
This approach was also limited by the lack of “access” to
the raw PPG signals as well as signals from other sensors,
thus limiting the algorithm to use of only averaged heart
rate data. Our W-PPG algorithm—based on a heuristic
signal processing approach using the raw PPG signal and in-
puts from other sensors—performed better than the machine
learning approach based on heart rate. The Apple Heart
Study also evaluated the performance of a smartwatch
PPG to detect irregular rhythms.14 The study reported a
positive predictive value of the PPG algorithm of 71% but
did not report the sensitivity or specificity of the algorithm
or the negative predictive value of the algorithm. For com-
parison, the W-PPG algorithm reported herein had a positive
predictive value of 82.3% for a single 5-minute classifica-
tion and 88.7% for the 2-of-3, 5-minute classification
notification scheme. Importantly, the algorithm reported in
the Apple Heart Study was not a continuous monitor
(measuring only 1 minute every 2 hours when a user is
completely still) nor was it combined with an on-demand
W-ECG.14

In our study, we used the W-PPG as a passive monitor for
irregular heart rhythms, which can be used to then trigger a
notification prompting the participant to record a confirma-
tory W-ECG. Using this approach, we had high sensitivity
(96.9%) and specificity (99.3%). The specificity can be
even further improved (100%) by requiring a second confir-
matory W-ECG taken at least 1 hour apart while having only
minimal impact on sensitivity (96.0%). No other published
study has evaluated the performance of combining a robust
continuous PPG monitor from a smartwatch triggering a
confirmatory ECG. This may make the approach attractive
in screening the general population in which very high
specificity is desired and detection of AF episodes .1 hour
is most appropriate.

The algorithm developed and tested in this study also has
the advantage that it can easily be tuned to optimize speci-
ficity for populations in which the prevalence of AF is low
to avoid false-positive results or sensitivity (still with a
good specificity) in populations in which the prevalence
is higher and the risk of missing the diagnosis is higher
(eg, elderly patients with cryptogenic stroke or those with
symptoms consistent with AF). By increasing the number
of required 5-minute AF “decisions” to just 5-of-6 by the
W-PPG algorithm required to detect AF, specificity of
99.8% can be achieved. In contrast, in high-prevalence pop-
ulations, sensitivity can be increased by reducing the number
of 5-minute decisions required to detect AF. Our data suggest
that PPG alone may be sufficient for monitoring AF, espe-
cially in the evening when the rate of undetermined rhythms
are quite low or in populations with prior diagnosis or high
prevalence.

Optimizing specificity, either by increasing the number of
required “AF decisions” before notifying the patient or by
requiring confirmatory W-ECGs, is critical to minimize
burden and utilization of health care system resources for
false-positive results. Current wearables suffer from high
false-positive notification rates, and, importantly, true test
performance for these devices has not been reported in the
literature. For example, although the Apple Watch has
approval from the US Food and DrugAdministration for their
W-PPG and W-ECG technology, the device has not been
adequately studied, and postmarket surveillance demon-
strated a high false-positive rate, with only 15% of patients
who received an abnormal pulse alert on an Apple Watch
having AF confirmed.22

Importantly, by incorporating data from the raw PPG
signals and the other sensors in the watch, we were able to
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Figure 3 A: Plot of the number of AF episodes detected on patch electrocardiography (P-ECG) by time of day andW-ECG classification.B: Stacked bar plot of
the distribution of W-PPG classifications according to the hour of the day. Abbreviations as in Figure 1.

Table 2 Algorithm performance

SENS SENSest (95% CI) SPEC SPECest (95% CI) AUC TP (N) TN (N)

W-PPG performance
Algorithm level (every 5-min
classification)

89.7 87.8 (83.6–91.0) 97.0 97.4 (97.1–97.7) 93.3 54,754 590,438

Notification level (2-of-3 classifications) 90.8 81.8 (71.2–89.1) 98.8 99.4 (99.3–99.5) 94.8 55,431 601,577
W-ECG performance
Algorithm level compared to P-ECG 97.4 98.9 (98.1–99.4) 96.5 99.3 (99.1–99.5) 97.1 1,712 10,259
Algorithm level compared to rhythm
adjudication by cardiologists

98.8 – 97.0 – 96.0 584 835

W-PPG triggered W-ECG performance
Diagnosis confirmed by a single W-ECG 96.9 96.9 (93.7–98.5) 99.3 99.7 (99.5–99.7) 97.7 219 51,456
Diagnosis confirmed by 2 W-ECGs �1 h
apart*

96.0 96.0 (92.9–97.8) 100 100 (100–100) 98.0 265 74,248

Daily participant performance
W-PPG triggered W-ECG confirmation (2
W-ECGs�1 h apart) detection of AF or
SR per day*

96.9 96.9 (93.9–98.4) 99.4 99.9 (99.7–100) 98.2 251 3772

Values are given as % unless otherwise indicated.
AF 5 atrial fibrillation; AUC 5 area under the receiver operator characteristic curve; CI 5 confidence interval; P-ECG 5 patch electrocardiography;

SENS 5 sensitivity; SENSest 5 estimated sensitivity using logistic regression; SPEC 5 specificity; SPECest 5 estimated sensitivity using logistic regression;
SR5 sinus rhythm; TN5 number of true-negative events (SR on P-ECG); TP5 number of true-positive events (AF on P-ECG); W-ECG watch electrocardiography;
W-PPG 5 watch photoplethysmography.
*Includes only episodes lasting�60 min on P-ECG. Also includes those having confirmation with 2 subsequent W-ECGs classified as AF (or one as SR) even if the
first W-ECG was classified as undetermined.
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Figure 4 A: Specificity and sensitivity of theW-PPGAF notification algorithm (notification of the user of possible AF) with increasing the required number of
5-minute AF classifications over an increasing period of time (n–1/n). Data include all episodes of AF longer than (n–1)! 5minutes at each point.B:Median time
after onset AF (from P-ECG) from first 5 minutes of AF to meeting criteria for notifying the user of possible AF with increasing the required number of 5-minute
AF classifications over an increasing period of time (n–1/n). Error bar represents the 75th percentile. C: Receiver operator characteristic (ROC) curve across the
range of increasing 5-minute AF classifications (n–1/n) required for notifying for AF. Inset represents zoomed in view of the ROC curve with truncated axes.
Abbreviations as in Figure 1.
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Figure 5 A: Scatter plot and regression line of AF burden (%) estimated byW-PPG compared to AF burden (%) estimated by P-ECG, showing a correlation of
r 5 0.98. Each dot represents the AF burden by each method for each patient with AF. Dashed line is the regression line. Solid gray line is line of equality.
B: Bland-Altman analysis showed good agreement between quantification of AF burden on W-PPG and P-ECG. Dots represent the difference in AF burden
(%) between that determined by W-PPG and that determined by P-ECG for each participant with AF. Dashed line is the average value of difference between
AF burden (%) by W-PPG and P-ECG. Dotted line is the upper and lower 95% confidence interval (CI) of the difference between AF burden (%) by W-PPG
and P-ECG. Abbreviations as in Figures 1 and 3
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develop a W-PPG algorithm that provided monitoring over
most of the day. Over the median 20.9 hours/day the smart-
watch was worn, an average of 6.7 hours (non-continuous)
of recorded data was classified as inconclusive by the W-
PPG algorithm. This compares to other consumer devices
in which monitoring for an irregular rhythm occurs for 1 min-
ute every 2 hours,14 amounting to a total of 4 minutes of
monitoring during a typical day of wearing the watch. As a
result of this near-continuous monitoring, we were able to
monitor AF burden using continuous W-PPG monitoring
for the first time in a consumer-grade watch with a high
correlation to that on P-ECG. Studies have demonstrated
that AF burden is directly related to an increased risk of
cardioembolic stroke and heart failure.5,13,23 Although most
clinicians utilize ECG patches for this purpose, their utility
is limited because they are short-term recordings and cannot
be easily deployed in real time. A smartwatch has a multiday
battery life (and can be fully recharged in a few hours) and
could allow for measurement of AF burden easily over a
very long period of time.
Study limitations
The majority of the MyHeartLab participants were Cauca-
sian. Although we did not see differences in signals across
races and previous data suggest that these devices perform
similarly across the spectrum of Fitzpatrick skin tones,24 cur-
rent findings may be insufficient to apply to people with
different skin tones. Importantly, the algorithms were not
designed to detect rhythms other than AF or SR. Notably,
our population had a high burden of other rhythms as well
as ectopy and still performed reasonably well for the detec-
tion of AF and SR. As shown in Supplemental Table 2,
when we include rhythms other than AF and SR (as deter-
mined on P-ECG) in the analyses, the performance is nearly
identical to that listed in Table 2.We did not assess the impact
of an algorithm on AF screening or utilization of health care
resources; such studies will need to be completed to assess
the safety and efficacy of such an algorithm for screening
and management of AF. The W-ECG algorithm limited
rhythm decisions to rates .50 bpm and ,110 bpm to avoid
misdiagnosing other more serious arrhythmias and thus may
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be less useful in patients with AF and rapid ventricular rates.
This also may have contributed to a lower sensitivity. The al-
gorithm does not adequately detect or quantify AF in patients
with concurrent ventricular pacing or atrial flutter, as the al-
gorithm detects the pulse as either regular or irregular, regard-
less of the true underlying electrophysiological rhythm.
Conclusion
Continuous monitoring W-PPG, on-demand W-ECG sensor,
and W-PPG triggered W-ECG recording demonstrated
excellent diagnostic accuracy for AF. Our findings suggest
that a robust smartwatch algorithm can limit the number of
false-positive alerts when used in a free-living setting.
Furthermore, our algorithm on the smartwatch was able to
determine AF burden reliably. More studies are needed to
assess its performance as a screening tool for AF and its
impact on utilization of health care resources.
Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hrthm.2021.
03.044.
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